ابزار هدایت به بالای صفحه

ابزار وبمستر

ماتریس الگوریتم

ماتریس الگوریتم

دانلود مقاله ماتریس الگوریتم در 35 صفحه فایل ورد قابل ویرایش و آماهده پرینت

دسته بندی: علوم پایه » ریاضی

تعداد مشاهده: 2925 مشاهده

فرمت فایل دانلودی:.doc

فرمت فایل اصلی: doc

تعداد صفحات: 35

حجم فایل:175 کیلوبایت

  پرداخت و دانلود  قیمت: 4,500 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.
0 0 گزارش
  • دانلود مقاله ماتریس الگوریتم در 35 صفحه فایل ورد قابل ویرایش و آماده پرینت

    خلاصه ای از متن:

    1-2) EZW

    الگوريتم EZW در سال 1993 توسط shapiro ابداع شد نام كامل اين واژه [1] به معناي كدينگ تدريجي با استفاده از درخت ضرايب ويولت است. اين الگوريتم ضرايب ويولت را به عنوان مجموعه اي از درختهاي جهت يابي مكاني در نظر مي گيرد هر درخت شامل ضرايبي از تمام زيرباندهاي فركانسي و مكاني است كه به يك ناحيه مشخص از تصوير اختصاص دارند. الگوريتم ابتدا ضرايب ويولت با دامنه بزرگتر را كددهي مي كند در صورتيكه دامنه يك ضريب بزرگتر يا مساوي آستانه مشخص باشد ضريب به عنوان ضريب معني دار [2] در نظر گرفته مي شود و در غير اينصورت بي معني[3] مي باشد يك درخت نيز در صورتي معني دار است كه بزرگترين ضريب آن از نظر دامنه بزرگتر يا مساوي با آستانه مورد نظر باشد و در غيراينصورت درخت بي معني است.

    مقدار آستانه در هر مرحله از الگوريتم نصف مي شود و بدين ترتيب ضرايب بزرگتر زودتر فرستاده مي شوند در هر مرحله، ابتدا معني دار بودن ضرايب مربوط به زير باند فركانسي پايين تر ارزيابي مي شود اگر مجموعه بي معني باشد يك علامت درخت صفر استفاده مي شود تا نشان دهد كه تمامي ضرايب مجموعه صفر مي باشند در غيراينصورت مجموعه به چهارزيرمجموعه براي ارزيابي بيشتر شكسته مي شود و پس از اينكه تمامي مجموعه ها و ضرايب مورد ارزيابي قرار گرفته اند اين مرحله به پايان مي رسد كدينگ EZW براساس اين فرضيه استوار است كه چگالي طيف توان در اكثر تصاوير طبيعي به سرعت كاهش مي يابد بدين معني كه اگر يك ضريب در زير باند فركانسي پايين تر كوچك باشد به احتمال زياد ضرايب مربوط به فرزندان آن در زير باندهاي بالاتر نيز كوچك هستند به بيان ديگر اگر يك ضريب والد بي معني باشد به احتمال زياد فرزندان آن نيز بي معني هستند اگر آستانه ها توانهايي از دو باشند ميتوان كدينگ EZW را به عنوان يك كدينگ bit-plane در نظر گرفت در اين روش در يك زمان، يك رشته بيت كه از MSB شروع مي شود كددهي مي شود با كدينگ تدريجي رشته بيت ها و ارزيابي درختها از زيرباندهاي فركانسي كمتر به زيرباندهاي فركانسي بيشتر در هر رشته بيت ميتوان به كدينگ جاسازي [4] دست يافت.

    الگوريتم EZW بر پايه 4 اصل استوار است [3]

    1- جدا كردن سلسله مراتبي زيرباندها با استفاده از تبديل ويولت گسسته

    1-1-2) تبديل ويولت گسسته

    تبديل ويولت سلسله مراتبي كه در EZW و SPIHT مورد استفاده قرار مي گيرد نظير يك سيستم تجزيه زيرباند سلسله مراتبي است كه در آن فاصله زيرباندها در مبناي فركانس بصورت لگاريتمي است.

    در شكل 2-2 يك مثال از تجزيه دو سطحي ويولت روي يك تصوير دو بعدي نشان داده شده است. تصوير ابتدا با بكارگيري فيلترهاي افقي و عمودي به چهار زيرباند تجزيه مي‌شود. در تصوير (c ) 2-2 هر ضريب مربوط به ناحيه تقريبي 2×2 پيكسل در تصوير ورودي است. پس از اولين مرحله تجزيه سه زير باند LH1 , HL1 و HH1 بعنوان زيرباندهاي فركانس بالايي در نظر گرفته مي شوند كه به ترتيب داراي سه موقعيت عمودي، افقي و قطري مي باشند اگر Wv  , Wh  به ترتيب فركانسهاي افقي و عمودي باشند، پهناي باند فركانسي براي هر زير باند در اولين سطح تجزيه ويولت در جدول 
    1-2 آمده است[4]

    جدول 2-1 ) پهناي باند فركانسي مربوط به هر زير باند پس از اولين مرحله تجزيه ويولت با استفاده از فيلترهاي مشابه (پايين گذر و بالاگذر) زير باند LL1 پس از اولين مرحله تجزيه ويولت، مجدداً تجزيه شده و ضرايب ويولت جديدي به دست مي آيد جدول 2-2) پهناي باند مربوط به اين ضرايب را نشان مي دهد.

    2-1-2) تبديل ويولت بعنوان يك تبديل خطي

    ميتوان تبديل بالا را يك تبديل خطي در نظر گرفت [5]. P  يك بردار ستوني كه درايه هايش نشان دهنده يك اسكن از پيكسلهاي تصوير هستند. C يك بردار ستوني شامل ضرايب ويولت به دست آمده است از بكارگيري تبديل ويولت گسسته روي بردار p است. اگر تبديل ويولت بعنوان ماتريس W در نظر ...


    [1] - Embedded zerotree wavelet

    [2] - Significant

    [3] - insignificant

    [4] - embedded coding



    برچسب ها: ماتریس الگوریتم ماتریس الگوریتم دانلود ماتریس الگوریتم دانلود مقاله ماتریس الگوریتم مقاله ماتریس الگوریتم
  • دانلود مقاله ماتریس الگوریتم در 35 صفحه فایل ورد قابل ویرایش و آماده پرینت
  • دانلود مقاله ماتریس الگوریتم در 35 صفحه فایل ورد قابل ویرایش و آماده پرینت
  

به ما اعتماد کنید

تمامي كالاها و خدمات اين فروشگاه، حسب مورد داراي مجوزهاي لازم از مراجع مربوطه مي‌باشند و فعاليت‌هاي اين سايت تابع قوانين و مقررات جمهوري اسلامي ايران است.
این سایت در ستاد سازماندهی ثبت شده است.

درباره ما

فایل اُکی صرفا یک طرح کارآفرینی مشارکتی است با هدف درآمد زایی برای دانش آموزان، دانشجویان، محققان و کاربران اینترنتی-تاسیس:1394

  • 2288 751 0933 - Telegram : @csmok
  • info@fileok.ir

با همکاری و حمایت:

تمام حقوق این سایت محفوظ است. کپی برداری پیگرد قانونی دارد. طراحی و پیاده سازی وبتینا
نماد اعتماد الکترونیک

تمامي كالاها و خدمات اين فروشگاه، حسب مورد داراي مجوزهاي لازم از مراجع مربوطه مي‌باشند و فعاليت‌هاي اين سايت تابع قوانين و مقررات جمهوري اسلامي ايران است.
این سایت در ستاد سازماندهی ثبت شده است.